CSE525 Lec7: Backtracking - ○ ○

Debajyoti Bera (M21)

Longest Increasing Subsequence

BENT SQUARING ... are subsequences of SUBSEQUENCEBACKTRACKING
Q. Given integer array A[1 ... n], find its longest increasing subsequence.

$$
\text { Incremental } \quad \text { Recursive } \quad \text { Systematic }
$$

3	1	4	1	5	9	2	6	5	3	5	8

Q. What problem should be (recursively) solved? Assume that A is global.

- LIS: Given input i, return LIS of A[i ... n]X
- LIS1: Given input prev and i , return LIS of $\mathrm{A}[\mathrm{i} . . \mathrm{n}]$ in which every element is larger than A[prev]
- LIS2: Given input i, return LIS of A[i ... n] in which the subsequence starts with A[i]

Longest Increasing Subsequence

Q. Given integer array A[1... n], find its longest increasing subsequence.

0	1	${ }_{2}$ Incrementak			Recursive			Systematic					
- -	3	1	4	1	5	9	2	6	5	3	5	8	

- LIS2(i): Given i, return LIS of A[i ...n] in which the subsequence starts with A[i]

$$
=-\infty \cdot \operatorname{LIS}(A[1 \ldots n])
$$

$\operatorname{LIS2}(\mathrm{i})=1+\max \{\operatorname{LIS2}(\mathrm{j}): \mathrm{i}<\mathrm{j}$ stch that $\mathrm{A}[\mathrm{i}]<\mathrm{A}[\mathrm{j}]\} \quad$ What is no such j exists? (base) LIS2(n) = 1

LIS $=$? $L / S 2(1), L 1, S(2), \cdots, \operatorname{LIS} 2(n)$

1. $\operatorname{LIS}(\mathrm{A})=\max \{\operatorname{LIS2}(\mathrm{i}):$:atl i $\}$
2. $\operatorname{LIS}(A)=\operatorname{LIS} 2(0)-1$ in which $A[0]=-1 \infty$

Longest Increasing Subsequence

LIS2(i): Given i, return LIS of A[i ... n] in which the subsequence starts with ALi]

$$
\begin{aligned}
& \operatorname{LIS2}(\mathrm{i})=1+\max \{\operatorname{LIS2}(\mathrm{j}): \mathrm{i}<\mathrm{j} \text { such that } \mathrm{A}[\mathrm{i}]<\mathrm{A}[\mathrm{j}]\} \\
& \text { (base) Solve(n) = } \quad>\quad \sum^{n} T(k) \\
& \text { 1. } \operatorname{LIS}(A)=\max \{\operatorname{LIS} 2(i): \text { all i }\} \quad k=1 \\
& \text { 22. } \operatorname{LIS}(A)=\operatorname{LIS} 2(0)-1 \text { in which } A[0]=-1 \\
& \text { Time complexity: } T(n+1) \pm 0(1)
\end{aligned}
$$

```
LIS(A[1..n]):
    best \leftarrow0
    for }i\leftarrow1\mathrm{ to n
        best \leftarrow}\leftarrow\operatorname{max}{\mathrm{ best,LISFIRST(i)}
    return best
```

```
LISFIRST(i):
    best }\leftarrow
    for }j\leftarrowi+1\mathrm{ to }
    if }A[j]>A[i
            best }\leftarrow\operatorname{max}{\mathrm{ best,LISFIRsT( }j)
    return 1+best
```

$\frac{\mathrm{LIS}(A[1 . . n]):}{A[0] \leftarrow-\infty}$
return $\operatorname{LISFIRST}(0)-1$

Longest Increasing Subsequence

Q. Given integer array $\mathrm{A}[1$... n], find its longest increasing subsequence. Incremental Recursive Systematic

1	2	3	4	5	6	7	8	9	10	11	12
3	1	4	1	5	9	2	6	5	3	5	8

- Given input prev and i where prev < i, return LIS of A[i ... n] in which every element of the LIS is larger than A[prev]

Solve(prev,i): If prev < i, return length of LIS of A[i ... n] in which every element is larger than $\mathbf{A}[$ prev]. If prev $>=\mathrm{i}$, undefined. Solve $(1,10)=$? Solve $(1,11)=$? Solve $(1,12)=$?

Q: Write recursive expression to compute Solve(prev,i). Include boundary/base cases. What happens to Soln. if A[prev] > A[i]? What happens to Soln. if A[prev] < A[i] ?

Binary search trees

$$
\left.B(n)\right|_{\text {root is } i}=B(i-1) \not x B(n-i)
$$

Number of binary search trees from

Ex-1	1	3	4	6	7	8	10	13	14	n_{1}
Ex-2	1	2	3	4	5	6	7	8	9	n_{2}
Ex-3	20	12	2	130	13	23	34	14	42	n_{3}

$\mathrm{B}(\mathrm{n})=$ number of BSTs from n numbers
$[1 \cdots n]$
Q: Write a recursive formula for $\mathrm{B}(\mathrm{n}) \mathrm{w} /$ base case.
 What is the first "thing" you draw in a BST ?
Can you "draw" a BST in a recursive manner ?

$$
{ }^{\triangle} B S T(i+1 \ldots n)
$$

$$
=B S T(1-n-i)
$$

Optimal BST given search frequencies $4 \backslash 4-4$

key	1_{1}	3	$\frac{4}{3}$	6_{4}	7_{5}	8_{6}	10	13	14
freq	5	7	2	6	9	1	3	4	2

Given tree T , access $\operatorname{Cost}(\mathrm{T})=$ total cost of search in $\mathrm{T}=\sum_{i=1}^{n}$ freq $[i] \times \operatorname{depth}(i, T)$

r is automatically accessed

$$
\begin{aligned}
& \frac{\operatorname{cost}(\text { T.left })}{\text { freq (1) }+\ldots+\text { freq[r-1] }}
\end{aligned}
$$

Q: Given T with root $\mathrm{r}(\mathrm{T}), \operatorname{Cost}(\mathrm{T})=$ cost from $\mathrm{r}(\mathrm{T})$, cost from T.left, cost from Wright

Optimal BST given search frequencies

key	1	3	4	6	7	8	10	13	14
freq	5	7	2	6	9	1	3	4	2

$$
\sum_{i=1}^{n} \text { freq }[i]+\operatorname{Cost}(\text { T.left })+\operatorname{Cost}(\text { T.right })
$$

Q: From key-freq table, construct tree with smallest cost. Solve OptCost(l,n).

$$
\text { OptCost(i,k) = cost of minimum cost BST using keys }\{\mathrm{i}, \mathrm{i}+1, \ldots, \mathrm{k}\}
$$

Suppose you knew how to solve OptCost(2,n) / OptCost(3,n) / ... OptCost(1,n-1).
$\operatorname{Opt} \operatorname{Cost}(1, n)=$ original prodem

Optimal BST given search frequencies

key	1_{1}	$\frac{3}{2}$	3^{4}	64	7_{5}	8	${ }^{6} 6$	1_{7}	13
8	14								
freq	5	7	2	6	9	1	3	4	2

$T(3)=\operatorname{cootr}$ to compute OplCost(\mid
$\mathrm{T},(\mathrm{j})=$ time-complexity to compute OptCost([any range with j elements]) $T(j)=\sum_{j}[T(t-1)+T(j-t)]+O(j)=O\left(3^{n}\right)$
Q: Solve recurrence. Compare with number of total number of BSTs.

$$
\begin{aligned}
& \begin{aligned}
T(j)=\sum_{t=1}^{j}[T(t-1)+T(j-t)]+c j= & T(0)+T(j-1)+T(1)+T(j-2)+\cdots \\
& +T(j-1)+T(0)+c j
\end{aligned} \\
& T(j)=2 \sum^{j-1} T(t)+c j \\
& T(j-1)=2 \sum_{t \rightarrow 0}^{t=0} j \vec{j} T(t)+c(j-1) \\
& T(j)-T(j-1)=2 T(j-1)+C \\
& T(j)=3 T(j-1)+C=\left(3^{n}\right) \text {. } \\
& O\left(n^{2}\right)=\{f(n) \cdots\} \\
& \min _{x}(f(x)+g(x)) \\
& =\min _{x} f(x)+\min _{x} g(x) \\
& \operatorname{cost}(3)+\operatorname{cost}(4) \\
& +\operatorname{cost}(2)+\operatorname{cost}(1) \\
& \operatorname{cost}(41) \\
& \begin{array}{c}
\text { opt. BST for } 2,1 \\
f_{1}+f_{2}
\end{array} \\
& \text { given } 3 \text { is the root } \\
& \begin{array}{c}
\text { opt. dSt } f_{1+f_{2}} \\
f_{0} 2,1 \\
f_{1}
\end{array}
\end{aligned}
$$

