CSE525 Lec7: Backtracking

 $\bullet \bullet \bullet$

Debajyoti Bera (M21)

Longest Increasing Subsequence

Incremental

BENT SQUARING ... are subsequences of SUBSEQUENCEBACKTRACKING

Q. Given integer array A[1 ... n], find its longest <u>increasing</u> subsequence.

Recursive

3 1 4 1 5 9 2 6 5 3 5 8

Systematic

Q. What <u>problem</u> should be (recursively) solved? Assume that A is global.

- **LIS**: Given input i, return LIS of A[i ... n] χ
- **LIS1:** Given input prev and i, return LIS of A[i ... n] in which every element is larger than **A[prev]**
- **LIS2:** Given input i, return LIS of A[i ... n] in which the subsequence starts with **A[i]**

Longest Increasing Subsequence

Q. Given integer array A[1 ... n], find its longest <u>increasing</u> subsequence.

2Incremental Recursive Systematic \bigcirc 3 4 1 1 5 9 2 6 5 3 5 8 $-\infty$ > sontinel L|S2(0) = length of L|S of A[0...n] in which the subsequence starts with**A[i]** $<math>\infty$ **LIS2**(i): Given i, return LIS of A[i...n] in which the subsequence starts with **A[i]** $= \int -\infty]$, LIS (A[1...n]) **LIS2**(i) = 1 + max { **LIS2**(j) : i < j such that A[i] < A[j] } What is no such j exists? (base) LIS2(n) = 1LIS = ? L | S 2(1) , L | S (2) / ..., L | S 2(n)1. LIS(A) = max { **LIS2**(<u>i</u>) : all i } 2. LIS(A) = **LIS2**(0) - 1 in which A[0] = -150

Longest Increasing Subsequence

Q. Given integer array A[1 ... n], find its longest <u>increasing</u> subsequence.

	Inc	remen	tal	Ree	cursive	2	Syst	ematio	2	10 11		
1	2	3	4	5	6	7	8	9	10	11	12	
3	1	4	1	5	9	2	6	5	3	5	8	

• Given input prev and i where prev < i, return LIS of A[i ... n] in which every element of the LIS is larger than **A[prev]**

Solve(prev,i): If prev < i, return length of LIS of A[i ... n] in which every element is larger than **A[prev]**. If prev >= i, undefined. Solve(1, 10) = ? Solve(1, 11) = ? Solve(1,12) = ?

Q: Write recursive expression to compute Solve(prev,i). Include boundary/base cases. What happens to <u>Soln.</u> if A[prev] > A[i]? What happens to <u>Soln.</u> if A[prev] < A[i]?

Binary search trees

Number of binary search trees from

Ex-1	1	3	4	6	7	8	10	13	14	n,
Ex-2	1	2	3	4	5	6	7	8	9	٨ ₂
Ex-3	20	12	2	130	13	23	34	14	42	NZ

 $\beta(n)|_{rootici} = \beta(i-1) \times \beta(n-i)$

B(n) = number of BSTs from n numbers $\begin{bmatrix} 4 & \cdots & n \end{bmatrix}$ Q: Write a recursive formula for B(n) w/ base case. What is the first "thing" you draw in a BST ? Can you "draw" a BST in a recursive manner ? $B(n) = \int_{-1}^{1} B(n) = \int_{-1}^{1} B(n-i) = O(4^n)$

Optimal BST given search frequencies 🐴 🚄

6

6

3

1

5

4

key

freq

Given tree T, access Cost(T) = total cost of search in T = $\sum_{i=1}^{n} freq[i] \times depth(i, T)$

9

8

10

3

13

4

14

2

depts=1

Cost.

Telf r is automatically accessed during access to 1, 2, ... r-1 T. right cost(T.left) + freq(1) + ... + freq[r-1] **Q:** Given T with root r(T), Cost(T) = <u>cost from</u> (T), cost from T.left, cost from T.right freq[r] & depts (not recursivel cost(T.right) freq(r+1) + ... + freq(n)noof -8 Cost(T.left) + Cost(T.right)freq[i]independently or BST on element

Optimal BST given search frequencies key freq

Given tree T, access Cost(T) = total cost of search in T = $\sum_{i=1}^{n} freq[i] \times depth(i,T)$

Q: Given T with root r(T), Cost(T) = <u>cost from r(T)</u>, <u>cost from T.left</u>, <u>cost from T.right</u>

 $\sum_{i=1}^{n} freq[i] + Cost(T.left) + Cost(T.right)$

Q: From key-freq table, construct tree with smallest cost. Solve OptCost(1,n). OptCost(i,k) = cost of minimum cost BST using keys { i, i+1, ..., k } Suppose you knew how to solve OptCost(2,n) / OptCost(3,n) / ... OptCost(1,n-1). Opt Cost (1, n) = original problem

Optimal BST given search frequencies

key	11	32	43	6 ₄	75	8 <u></u>	10	13	14
freq	5	7	2	6	9	1	3	4	2

Q: What is the recurrence for time-complexity? T(i,k) = time-complexity to compute OptCost(i,k) T(j) = time-complexity to compute OptCost([any range with j elements]) $T(j) = \sum_{i=1}^{n} [T(i-i) + T(j-i)] + O(j) = O(3^n)$ Q: Solve recurrence. Compare with number of total number of BSTs.

$$T(j) = \frac{i}{2} \sum_{\substack{j=1 \\ t = 1 \\ j = 1 \\ j = 1 \\ j = 1 \\ j = 1 \\ T(j) = 2 \sum_{\substack{j=1 \\ t = 2 \\ T(j) = 2 \sum_{\substack{j=1 \\ t = 2 \\ T(j) = 2 \sum_{\substack{j=1 \\ t = 2 \\ t = 2$$