
CSE525 Lec7: Backtracking
Debajyoti Bera (M21)

Longest Increasing Subsequence
BENT SQUARING … are subsequences of SUBSEQUENCEBACKTRACKING

Q. Given integer array A[1 … n], find its longest increasing subsequence.
Incremental Recursive Systematic

Q. What problem should be (recursively) solved? Assume that A is global.

● LIS: Given input i, return LIS of A[i … n]
● LIS1: Given input prev and i, return LIS of A[i … n] in which every element is

larger than A[prev]
● LIS2: Given input i, return LIS of A[i … n] in which the subsequence starts

with A[i]

3 1 4 1 5 9 2 6 5 3 5 8

Longest Increasing Subsequence
Q. Given integer array A[1 … n], find its longest increasing subsequence.

Incremental Recursive Systematic

● LIS2(i): Given i, return LIS of A[i … n] in which the subsequence starts with A[i]

LIS2(i) = 1 + max { LIS2(j) : i < j such that A[i] < A[j] }
(base) LIS2(n) = 1

LIS = ?
1. LIS(A) = max { LIS2(i) : all i }
2. LIS(A) = LIS2(0) - 1 in which A[0] = -1

3 1 4 1 5 9 2 6 5 3 5 8

What is no such j exists?

Longest Increasing Subsequence
LIS2(i): Given i, return LIS of A[i … n] in which the
subsequence starts with A[i]

LIS2(i) = 1 + max { LIS2(j) : i < j such that A[i] < A[j] }
(base) Solve(n) = 1
1. LIS(A) = max { LIS2(i) : all i }
2. LIS(A) = LIS2(0) - 1 in which A[0] = -1

Time complexity?

Longest Increasing Subsequence
Q. Given integer array A[1 … n], find its longest increasing subsequence.

Incremental Recursive Systematic

● Given input prev and i where prev < i, return LIS of A[i … n] in which every
element of the LIS is larger than A[prev]

Solve(prev,i): If prev < i, return length of LIS of A[i … n] in which every element is
larger than A[prev]. If prev >= i, undefined.

Q: Write recursive expression to compute Solve(prev,i). Include boundary/base cases.
What happens to Soln. if A[prev] > A[i]? What happens to Soln. if A[prev] < A[i] ?

1 2 3 4 5 6 7 8 9 10 11 12

3 1 4 1 5 9 2 6 5 3 5 8

Solve(1, 10) = ? Solve(1, 11) = ? Solve(1,12) = ?

Binary search trees
Number of binary search trees from

B(n) = number of BSTs from n numbers

Q: Write a recursive formula for B(n) w/ base case.
What is the first “thing” you draw in a BST ?
Can you “draw” a BST in a recursive manner ?

Ex-1 1 3 4 6 7 8 10 13 14

Ex-2 1 2 3 4 5 6 7 8 9

Ex-3 20 12 2 130 13 23 34 14 42

Optimal BST given search frequencies

Given tree T, access Cost(T) = total cost of search in T =

Q: Given T with root r(T), Cost(T) = cost from r(T), cost from T.left, cost from T.right

key 1 3 4 6 7 8 10 13 14

freq 5 7 2 6 9 1 3 4 2

freq[r]

cost(T.left) +
freq(1) + … + freq[r-1]

cost(T.right) +
freq(r+1) + … + freq(n)

r is automatically accessed
during access to 1, 2, … r-1

Optimal BST given search frequencies

Given tree T, access Cost(T) = total cost of search in T =

Q: Given T with root r(T), Cost(T) = cost from r(T), cost from T.left, cost from T.right

Q: From key-freq table, construct tree with smallest cost. Solve OptCost(1,n).
 OptCost(i,k) = cost of minimum cost BST using keys { i, i+1, …, k }
 Suppose you knew how to solve OptCost(2,n) / OptCost(3,n) / … OptCost(1,n-1).

key 1 3 4 6 7 8 10 13 14

freq 5 7 2 6 9 1 3 4 2

Q: What is the recurrence for time-complexity?
 T(i,k) = time-complexity to compute OptCost(i,k)
 T(j) = time-complexity to compute OptCost([any range with j elements])

Q: Solve recurrence. Compare with number of total number of BSTs.
Show that T(n) - T(n-1) = 2T(n-1) + ...

Optimal BST given search frequencies
key 1 3 4 6 7 8 10 13 14

freq 5 7 2 6 9 1 3 4 2

